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Abstract
The rise of multidrug-resistant (MDR) Klebsiella pneumoniae has 

greatly complicated the management of infections caused by this pathogen. 
This study aimed to assess the antimicrobial resistance patterns and to 
detect the presence of β-lactamase genes in both MDR and non-MDR 
K. pneumoniae isolates obtained from a variety of clinical specimens.
A total of 50 K. pneumoniae isolates were collected and identified
using standard microbiological techniques. Antimicrobial susceptibility
testing was performed using the Kirby-Bauer disk diffusion method.
Phenotypic detection of extended-spectrum β-lactamases (ESBLs),
metallo-β-lactamases (MBLs), and carbapenemases was carried out via
the double-disk synergy test, combined disk test, and modified Hodge test,
respectively. Detection of resistance and virulence genes at the molecular
level was conducted using polymerase chain reaction (PCR). Multidrug
resistance was observed in 50% of the isolates, with high levels of
resistance to β-lactam antibiotics, carbapenems, ciprofloxacin, piperacillin,
and tazobactam. Notably, 28% of the isolates also exhibited resistance to
colistin. ESBL was identified phenotypically in 30% of the isolates. NDM-
1 (12%), NDM-5 (2%), VIM (4%), and KPC (8%) were detected among
β-lactamase genes. These findings indicate a high prevalence of MDR
K. pneumoniae in Bangladesh, posing a serious challenge for infection
control and treatment strategies in healthcare settings.
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resistance

Introduction
Carbapenems are a group of broad-spectrum β-lactam antibiotics 

commonly prescribed as a last resort for treating infections caused by 
multidrug-resistant Gram-negative bacteria. However, the emergence of 
carbapenem-resistant Klebsiella pneumoniae (CR-Kp) has become a major 
concern in hospitals worldwide due to their link to severe infections and high 
morbidity and mortality rates (1). Clinical isolates of K. pneumoniae are known 
for producing a range of β-lactamase enzymes and are intrinsically resistant 
to certain antibiotics such as ampicillin and amoxicillin (2). The increasing 
frequency and rapid spread of resistant strains present a growing clinical 
challenge. Resistance to β-lactam antibiotics in this species is primarily due 
to the production of enzymes like extended-spectrum β-lactamases (ESBLs), 
plasmid-mediated AmpC β-lactamases, and carbapenemases. CR-Kp isolates 
often exhibit resistance not only to carbapenems but also to multiple other 
antibiotic classes, including penicillins, third-generation cephalosporins, 
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fluoroquinolones, and aminoglycosides. The prevalence of 
these resistant strains varies by region and is influenced by 
local infection control practices and antimicrobial stewardship 
efforts (3). Of particular concern are emerging pan-resistant 
strains of CR-Kp, which leave no effective antibiotic options 
and pose a serious global health threat. Understanding the 
molecular epidemiology and resistance mechanisms of 
these strains is critical for identifying potential alternative 
treatments and controlling their spread (4).

One of the primary mechanisms of carbapenem resistance 
in K. pneumoniae involves the production of carbapenemase 
enzymes (5). These enzymes are categorized into four Ambler 
classes—A, B, C, and D—based on their molecular structure. 
Among them, classes A (e.g., KPC), B (e.g., NDM, VIM, 
IMP), and D (e.g., OXA-48-like enzymes) are particularly 
relevant in clinical settings (6). It is not uncommon for a 
single strain to harbor multiple β-lactamase genes, which may 
contribute to its high adaptability and resistance profile (7). 
These genes are often co-located on mobile genetic elements 
like plasmids and transposons, facilitating their transfer and 
persistence across bacterial populations (5). In this study, 
we sought to characterize the β-lactamase genes present in 
carbapenem-resistant K. pneumoniae isolates collected from 
clinical samples in Bangladesh. Understanding these genetic 
resistance patterns is essential for informing treatment 
strategies and for curbing the spread of carbapenem-resistant 
Gram-negative bacteria.

Materials and Methods
Study Design and Setting

A cross-sectional study was carried out in the Department 
of Microbiology and Immunology at Dhaka Medical College 
Hospital (DMCH), Dhaka, Bangladesh. The research was 
conducted over one year, from January to December 2022.

Isolation and Identification of Klebsiella pneumoniae
Clinical specimens, including wound swabs, urine, 

wound swabs, pus, tracheal aspirates, sputum, blood, and 
other body fluids, submitted to the Microbiology Laboratory 
at DMCH were processed for bacterial isolation. A total of 
50 consecutive, non-duplicate isolates of K. pneumoniae 
were obtained from hospitalized patients during the study 
period. Identification of K. pneumoniae began with observing 
colony morphology on MacConkey agar, followed by Gram 
staining and standard biochemical tests. These included 
catalase and oxidase activity, urease production, indole 
reaction, gas formation, motility testing, citrate utilization, 
and lactose fermentation. For quality control, the reference 
strain K. pneumoniae ATCC 700603 was used during 
culture, biochemical testing, and phenotypic confirmation 
of clinical isolates. The study received ethical approval from 
the institutional review board of Dhaka Medical Colleg, and 

written informed consent was secured from all participating 
patients.

Antimicrobial Susceptibility Testing

The antimicrobial susceptibility profiles of the Klebsiella 
pneumoniae isolates were determined using the standard 
Kirby-Bauer disk diffusion method on Mueller-Hinton agar 
(Oxoid Ltd., UK) (8). A range of commercially prepared 
antibiotic discs was employed, including amoxicillin-
clavulanic acid (20/10 µg), piperacillin-tazobactam (100/10 
µg), cefepime (30 µg), cefoxitin (30 µg), ceftriaxone (30 
µg), cefuroxime (30 µg), ceftazidime (30 µg), amikacin (30 
µg), ciprofloxacin (5 µg), imipenem (10 µg), tigecycline 
(15 µg), and aztreonam (30 µg). Interpretation of inhibition 
zones was carried out under guidelines established by the 
Clinical and Laboratory Standards Institute (CLSI) and the 
European Committee on Antimicrobial Susceptibility Testing 
(EUCAST). To identify ESBL-producing strains, the double-
disk synergy test was applied. Furthermore, isolates were 
categorized as multidrug-resistant (MDR), extensively drug-
resistant (XDR), or pandrug-resistant (PDR) based on criteria 
outlined by the Centers for Disease Control and Prevention 
(CDC) (9, 10).

Definition of Multidrug-Resistant (MDR) Klebsiella 
pneumoniae

In this study, Klebsiella pneumoniae isolates were 
classified as multidrug-resistant (MDR) if they demonstrated 
resistance to at least one antimicrobial agent in three or 
more distinct classes of antibiotics. These classes included, 
but were not limited to, antipseudomonal penicillins, 
aminoglycosides, carbapenems, first and second-generation 
cephalosporins, extended-spectrum cephalosporins, third 
and fourth-generation cephalosporins, fluoroquinolones, 
β-lactam/β-lactamase inhibitor combinations, and penicillins, 
following CDC-defined criteria (10).

Phenotypic Detection of Resistance Mechanisms
Detection of ESBL Production Using the Double Disk 
Synergy Test (DDST)

ESBL activity was evaluated phenotypically using the 
double disk synergy test (DDST) on Mueller-Hinton Agar 
(MHA). In this method, disks containing third-generation 
cephalosporins, specifically ceftriaxone and ceftazidime (30 
µg each), were positioned 20 mm apart from a central disk 
of amoxicillin-clavulanic acid (20/10 µg). An enhancement 
of the inhibition zone around either cephalosporin disk in 
relation to the clavulanate-containing disk was interpreted 
as an ESBL production. A distinct "keyhole" or "champagne 
cork" shaped zone confirmed the presence of synergy between 
the antibiotics, supporting the ESBL positive phenotype 
(10) (Fig. 1).
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Detection of Carbapenemase Production Using the 
Modified Hodge Test (MHT)

The Modified Hodge Test (MHT) was employed to screen 
for carbapenemase activity in the Klebsiella pneumoniae 
isolates. A suspension of Escherichia coli ATCC 25922 was 
prepared and adjusted to a 0.5 McFarland turbidity standard. 
Using a sterile cotton swab, the suspension was uniformly 
spread over the surface of a Mueller-Hinton agar plate to 
form a lawn culture. The inoculated plate was then left at 
room temperature for approximately 15 minutes to allow for 
surface drying. An imipenem (10 µg) disk was placed at the 
center of the agar plate. Test isolates were streaked in a straight 
line from the edge of the imipenem disk outward toward 
the edge of the plate. After overnight incubation at 37 °C, 
plates were examined for enhanced growth of E. coli along 
the streaked line toward the imipenem disk. A cloverleaf-like 
indentation in the inhibition zone around the disk at the point 
of intersection was considered a positive result, indicating 
carbapenemase production by the test organism (11) (Fig. 2).

(MBL) production, the combined disc test using imipenem 
and imipenem-EDTA was performed. The test isolate was 
adjusted to a 0.5 McFarland turbidity standard and uniformly 
inoculated onto Mueller-Hinton agar using a sterile swab. 
Two antibiotic discs were placed on the agar surface: one 
containing imipenem (10 µg) and the other containing 
imipenem combined with EDTA (10/750 µg). The plates 
were incubated at 37 °C for 18–24 hours. An increase of ≥7 
mm in the diameter of the inhibition zone surrounding the 
imipenem-EDTA disc compared to the imipenem-only disc 
was interpreted as indicative of MBL production by the 
isolate (12, 13) (Fig. 3).

Figure 1: Detection of ESBL by double disc synergy test (DDST)

Figure 2: Detection of carbapenemase by Modified Hodge test 
(MHT)

Figure 3: Detection of metallo β-lactamase by Imipenem-EDTA 
combined disc test

Combined Disc Test with Imipenem-EDTA for 
Detection of Metallo-β-Lactamase (MBL)

To screen for the presence of metallo-β-lactamase 

Detection of β-Lactamase Genes by Polymerase 
Chain Reaction (PCR)

Conventional polymerase chain reaction (PCR) was 
employed to detect carbapenemase (KPC) and metallo-β-
lactamase (NDM, VIM) genes in Klebsiella pneumoniae 
isolates. Genomic DNA was extracted using the boiling 
method. Amplified PCR products were visualized by agarose 
gel electrophoresis to confirm the presence of target genes 
(14,15). 

Data Analysis
All collected data were analyzed using IBM SPSS 

Statistics version 23. Categorical variables were summarized 
as frequencies and percentages. Graphs and visualizations 
were generated using the matplotlib library in Python.

Results
Out of a total of 350 clinical specimens analyzed, the 

majority were wound swabs and pus (n = 149), followed 
by urine samples (n = 91), sputum (n = 42), blood (n = 
46), and endotracheal aspirates (n = 22). Of these, 226 
samples (64.57%) showed positive bacterial growth upon 
culture, as detailed in Table 1. The distribution of bacterial 
species identified from these 226 culture-positive samples is 
presented in Table 2.
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The antimicrobial resistance profiles of the Klebsiella 
pneumoniae isolates are summarized in Table 3. Of the 50 
isolates tested, resistance to cefuroxime was observed in 66% 
(n = 33), followed closely by ceftriaxone, with 62% (n = 32) of 
isolates showing resistance. Fosfomycin exhibited the highest 
susceptibility among the tested antibiotics, with only 12%  
(n = 6) of isolates demonstrating resistance. Notably, resistance 
to colistin was identified in 28% (n = 14) of the isolates. The 
dissemination of resistance categories amid the isolates is 
presented in Table 4. Half of the K. pneumoniae isolates  
(n = 25, 50%) were classified as multidrug-resistant (MDR), 
while 18% (n = 9) met the criteria for extensively drug 
resistant (XDR) status. Two isolates (4%) were identified 
as pandrug resistant (PDR), and 15 isolates (30%) were 
confirmed as ESBL producers, as illustrated in Figure 4.

Phenotypic detection of resistance mechanisms among 
Klebsiella pneumoniae isolates is summarized in Table 5. 
Of the 50 isolates examined, extended-spectrum β-lactamase 
(ESBL) production was identified in 15 isolates (30.0%) using 
the double disc synergy test (DDST). Metallo-β-lactamase 
(MBL) activity was detected in 11 isolates (22.0%) through 

the combined disc (CD) test with imipenem and EDTA. 
Additionally, carbapenemase production was confirmed in 8 
isolates (16.0%) using the Modified Hodge Test (MHT).

Among the 50 Klebsiella pneumoniae isolates analyzed, 
metallo-β-lactamase (MBL) genes were detected in 11 

Samples Number of 
Samples

Culture Positive 
n (%)

Wound swab and pus 149 115 (77.18)

Urine 91 45 (49.45)

Sputum 42 23 (54.76)

ETA 22 19 (86.36)

Blood 46 24 (52.17)

Total 350 226 (64.57)

Table 1: Positive culture results from various clinical samples  
(N = 350).

Organism n (%)
Escherichia coli 54 (23.89)
Pseudomonas aeruginosa 51 (22.57)
Klebsiella pneumoniae 50 (22.12)
Klebsiella oxytoca 2 (0.88)
Acinetobacter baumanii 13 (5.75)
Enterobacter cloacae 8 (3.54)
Enterobacter aerogenes 6 (2.65)
Citrobacter freundii 2 (0.88)
Citrobacter koseri 1 (0.44)
Proteus mirabilis 5 (2.22)
Proteus vulgaris 3 (1.34)
Gram-positive bacteria 31 (13.72)
Total 226 (100.00)

Table 2: The distribution of organisms isolated from various 
samples (n = 226).

30%

50%

18%

4%

ESBL MDR XDR PDR

Figure 4: Antimicrobial resistance pattern

Antimicrobial drugs Resistance, n (%)
Amikacin 23 (46.0)

Amoxiclav 24 (48.0)

Cefoxitin 24 (48.0)

Cefuroxime 33 (66.0)

Ceftazidime 30 (60.0)

Ceftriaxone 32 (64.0)

Cefepime 25 (50.0)

Ciprofloxacin 26 (52.0)

Piperacillin/Tazobactam 18 (36.0)

Aztreonam 31 (62.0)

Imipenem 11 (22.0)

Tigecycline 9 (18.0)

Fosfomycin 6 (12.0)

Colistin 14 (28.0)

Table 3: Antimicrobial resistance pattern among isolated Klebsiella 
pneumoniae (n=50)

Type of resistance n (%)
ESBL 15(30.0)

MDR 25(50.0)

XDR 9(18.0)

PDR 2 (4.0)

Table 4: Classification of Klebsiella pneumoniae isolates by 
resistance profile, including MDR, XDR, PDR, and ESBL producers 
(n = 50)
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isolates (22.0%). Of these, six isolates (12.0%) carried the 
NDM-1gene, one isolate (2.0%) harbored NDM-5, and two 
isolates (4.0%) tested positive for the VIM gene. In addition, 
carbapenemase genes were identified in 8 isolates (16.0%), 
with KPC detected in four of them (8.0%), as detailed in 
Table 6.

followed by Pseudomonas aeruginosa (22.57%) and 
Klebsiella pneumoniae (22.12%). This distribution aligns 
with similar findings from a study in India, where 56.9% of 
clinical samples yielded bacterial growth (16). The prevalence 
of K. pneumoniae observed in this study is consistent with 
earlier reports from Bangladesh, which documented rates of 
24% in the northeastern region and 19.72% in the southeast 
(17,18). Among the 50 K. pneumoniae isolates analyzed, half 
(n = 25; 50%) were identified as multidrug-resistant (MDR). 
This proportion is comparable to findings from a study in 
Indonesia by Nirwati et al., where 54.49% of isolates were 
MDR (19). However, a considerably higher MDR prevalence 
(84.37%) was reported in Iraq by Aljanaby et al. (20), 
indicating geographical variability in resistance patterns. The 
resistance profile of the isolates showed elevated resistance 
to second through fourth-generation cephalosporins, 
aztreonam, and ciprofloxacin. Similar resistance trends were 
previously reported in Bangladesh, where K. pneumoniae 
isolates displayed high resistance to cefuroxime, ceftriaxone, 
ceftazidime, cefepime, and ciprofloxacin (21,22).

In our study, the rates of resistance were notable: 
cefuroxime (66%), ceftriaxone (64%), aztreonam (62%), 
ceftazidime (60%), ciprofloxacin (52%), and cefepime (50%). 
These findings are in line with results from Kawser et al., who 
reported comparable resistance rates (23). Resistance to last-
resort antibiotics, including colistin (28%), imipenem (22%), 
tigecycline (18%), and fosfomycin (12%), was also observed. 
Colistin resistance, in particular, has shown an upward trend 
in Bangladesh, with a previous systematic review reporting 
median resistance rates of 18.8%, ranging from 0% to 21.4% 
(22,24). This increase is likely influenced by the clinical 
overuse of colistin and horizontal transfer of resistance 
genes via mobile genetic elements. Phenotypic screening 

Detection Method Positive Isolates, n (%)
Double Disc Synergy Test (ESBL) 15 (30.0%)

Combined Disc Assay (MBL) 11 (22.0%)

Modified Hodge Test (Carbapenemase) 8 (16.0%)

Table 5: Phenotypic detection of β-Lactamase production in 
Klebsiella pneumoniae isolates (n = 50)

Gene Type Gene Positive 
Isolates, n

Percentage 
(%)

Metallo-β-lactamase 
(MBL) NDM-1 6 12

NDM-5 1 2

VIM 2 4

Total (MBL) 9 18

Carbapenemase KPC 4 8

Total 4 8

Table 6: Distribution of MBL and carbapenemase genes detected in 
Klebsiella pneumoniae isolates (n = 50)

Figure 5: Photograph of gel electrophoresis; negative control 
without DNA (TE buffer) (lane one), negative control Escherichia 
coli ATCC 25922 (lane 2), amplified DNA of 264 bp for blaNDM-1 
(lane-3), DNA of 390 bp of blaVIM (lane 4), DNA of 498 bp of 
blaKPC (lane 6) in imipenem-resistant K. pneumoniae, hundred bp 
DNA ladder (lane 5).

Figure 6: Photograph of gel electrophoresis; negative control 
without DNA (TE buffer) (lane one), negative control Escherichia 
coli ATCC 25922 (lane 2), amplified DNA of 264 bp for blaNDM-
1(lane-3), DNA of 498 bp of blaKPC (lane 6) in imipenem-resistant 
K. pneumoniae, hundred bp DNA ladder (lane 5).

Discussion
In this study, 226 out of 350 non-duplicate clinical 

specimens (64.57%) showed positive bacterial growth. 
Among the culture-positive cases, Escherichia coli was the 
most frequently isolated organism, accounting for 23.89%, 
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for extended-spectrum β-lactamase (ESBL) production 
using the double-disc synergy test (DDST) identified 15 
isolates (30%) as ESBL producers. This result aligns with a 
study by Chakraborty et al. in Bangladesh, which reported 
a 45% ESBL rate in K. pneumoniae isolates(25),  while a 
lower rate of 17% was observed in a study from Pakistan 
by Riaz et al (26). Metallo-β-lactamase (MBL) production 
was detected in 11 isolates (22%) through the combined disc 
assay. This is notably lower than the 85.7% MBL detection 
rate among imipenem-resistant isolates reported by Farzana 
et al (27). The discrepancy may be due to the inclusion of all 
K. pneumoniae isolates in the current study, rather than only
imipenem non-susceptible ones, which may have lowered the
overall detection rate.

Carbapenemase activity was identified in 8 isolates (16%) 
using the Modified Hodge Test (MHT). This detection rate is 
lower than those reported in studies by Metwally and Eftekhar, 
which found carbapenemase production in 70% and 90% of 
isolates, respectively (28,29). The sensitivity and specificity 
of the MHT can vary by region and testing conditions, and its 
limitations have been noted in previous literature, including 
by Nordmann et al (30). Molecular analysis revealed that 
22% of the isolates carried MBL genes. Specifically, NDM-1 
was detected in 12% of isolates, and NDM-5 in 2%. These 
findings are consistent with previous studies conducted in 
Bangladesh, where Farzana et al. and Rahman et al. reported 
NDM gene presence in 22.86% and 20.51% of isolates, 
respectively (31,32).  The VIM gene was found in 4% of 
isolates. As previously described by Queenan et al., VIM and 
IMP genes are more frequently associated with P. aeruginosa 
and are less commonly detected in Enterobacteriaceae (33). 
Carbapenemase gene detection revealed that 8 isolates (16%) 
harbored such genes, with KPC identified in 4 isolates (8%). 
This is somewhat lower than the 25% prevalence reported by 
Sattar et al. in a study of K. pneumoniae isolates (34). 

Conclusion
Most of the Klebsiella pneumoniae isolates were 

multidrug-resistant in this study. There are limited therapeutic 
options to treat MDR Klebsiella pneumoniae, and this 
manifests a gloomy scenario for the management of hospital 
infections in Bangladesh; it further bears the necessity of 
necessary surveillance system to deal with the inevitable 
healthcare disaster in the offing.
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