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Abstract
SARS-CoV-2 infection has led to a range of long-lasting symptoms, 

collectively referred to as long COVID. Current research highlights the 
critical role of angiotensin-converting enzyme 2 (ACE2) in regulating gut 
microbiota diversity, vascular function, and homeostasis within the renin-
angiotensin system (RAS). ACE2 is utilized by the SARS-CoV-2 virus 
to enter host cells, but its downregulation following infection contributes 
to gut microbiota dysbiosis and RAS disruption. These imbalances have 
been linked to a range of long COVID symptoms, including joint pain, 
chest pain, chronic cough, fatigue, brain fog, anxiety, depression, myalgia, 
peripheral neuropathy, memory difficulties, and impaired attention. This 
review investigates the dysregulation caused by SARS-CoV-2 infection 
and the long-term effects it has on various organ systems, including the 
musculoskeletal, neurological, renal, respiratory, and cardiovascular 
systems. We explored the bidirectional interactions between the gut 
microbiota, immune function, and these organ systems, focusing on how 
microbiota dysregulation contributes to the chronic inflammation and 
dysfunction observed in long COVID symptoms. Understanding these 
interactions is key for identifying effective therapeutic strategies and 
interventional targets aimed at mitigating the impact of long COVID on 
organ health and improving patient outcomes.
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an 

airborne virus and the causative agent of COVID-19. SARS-CoV-2 belongs to 
the Coronaviridae family and the Nidovirales order. A variety of viruses in this 
order, including Alphacoronavirus and Betacoronavirus, are known to infect 
mammals and include human pathogens. Conversely, Gamma coronavirus 
and Delta coronavirus primarily infect avian species and some mammals, 
with a reduced likelihood of human infection [1, 2]. The structural and 
genomic features of SARS-CoV-2, including its envelope, spike glycoprotein 
(S protein), and large single-stranded, positive-sense RNA genome [3], make 
it especially infectious and adaptable compared to other coronaviruses. The 
envelope of SARS-CoV-2 is a lipid membrane that surrounds its genetic 
material, embedding spike glycoproteins within it. This lipid layer provides 
durability and allows the virus to evade host immune defenses by mimicking 
host cell structures. The spike proteins enable the virus to bind to angiotensin-
converting enzyme 2 (ACE2) receptors on human cells, facilitating fusion 
of the viral membrane with the host cell membrane (Figure 1). This fusion 
allows the virus to inject its RNA directly into the host cell, bypassing some 
of the body’s initial immune defenses [4].
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The S protein, essential for cell entry, binds to ACE2 
receptors with high affinity, a trait stronger than that of SARS-
CoV [5]. A furin cleavage site on the spike protein enables it to 
be processed by host enzymes, enhancing the virus’s ability to 
infect cells [6,7]. This efficient binding and entry mechanism 
contribute to rapid transmission and adaptability of SARS-
CoV-2 to various cell types. The RNA genome of the virus is 
large and positive sense, meaning it can be directly translated 
by host cell machinery to produce viral proteins immediately 
upon entry [8]. This efficiency accelerates replication within 
the host, allowing rapid assembly of new viral particles [9]. 
The positive-sense RNA genome helps SARS-CoV-2 evade 
host immune responses by quickly taking control of cellular 
machinery [10]. Together, these characteristics allow SARS-
CoV-2 to effectively enter, replicate, and evade immune 
defenses, contributing to its widespread transmission.

Transmission of SARS-CoV-2
SARS-CoV-2 has multiple modes of transmission, 

including respiratory and aerosol droplets as well as surface 
contamination [11]. Respiratory droplets travel short 
distances, ranging from 0-6 feet, typically from actions such 
as sneezing, coughing, or talking [12]. These droplets are 
often limited to densely populated areas. In contrast, aerosol 
droplets can remain airborne for up to 3 hours, presenting a 
risk in high-density, enclosed spaces. Surface contamination 
transmission varies and can persist on surfaces for hours to 
days [13], infecting individuals who touch contaminated 
areas and then contact their face [14,15].

Factors Affecting Transmission
There are several factors that may affect the transmission 

of SARS-CoV-2. The environmental and socio-behavioral 
characteristics can influence the transmission routes of 
SARS-CoV-2. These include factors such as ventilation [16], 
temperature [17], gathering size [18], and mask-wearing 
[19]. Temperature fluctuations have been correlated with 
COVID-19 spread. A study of multi-city data showed that a 
decrease in temperature from 17°C to 7.5°C and a reduction 
in humidity from 11 g/m³ to 6 g/m³ were associated with 
higher COVID-19 incidence [20]. Another study examining 
COVID-19 spread across 190 countries found temperature 
to be inversely associated with incidence, with humidity 
having the strongest correlation at 72%. Stronger wind 
speeds were linked to lower COVID-19 incidence [21]. 
These findings highlight seasonal transmission patterns 
and regions more likely to experience higher COVID-19 
and potential long COVID incidence. Ventilation plays a 
key role in COVID-19 transmission, including both natural 
and mechanical ventilation [22]. Natural ventilation allows 
outdoor air to flow indoors without mechanical assistance, 
typically through windows, doors, or vents. Mechanical 
ventilation, on the other hand, requires equipment such 
as fans and duct systems [23]. A study evaluating natural 
ventilation in schools found that opening windows by 15% 
with cross-ventilation reduced infection risk to less than 1% 
when masks were used. In contrast, single-sided ventilation 
was less effective, with only 30% of the cross-ventilation rate 
[24]. Further studies revealed that both indoor mechanical 
and natural ventilation were crucial for reducing spread, 
particularly in enclosed areas. HEPA filters, outdoor air 
exchange, and cross-ventilation systems, particularly in high-
occupancy spaces, were shown to reduce transmission [25].

Figure 1: Viral entry of SARS-CoV-2 mediated by the spike protein binding to the ACE2 receptor on the host cell membrane via its receptor-
binding domain, which exhibits high affinity for ACE2. Proteolytic cleavage of the spike protein facilitates fusion between the viral envelope 
and the host cell membrane, enabling the viral genome to enter the host cell.
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Gathering size correlates with COVID-19 spread. A study 
found that gatherings of 50+ people contributed to 5.4% of 
transmissions, gatherings of 20+ to 18.9%, and gatherings of 
10+ to 25.2% [26]. Further studies investigated 184 group 
events finding that gatherings of 100 or fewer played a 
significant role in spread due to higher frequency and lower 
detection and control rates [27]. Additionally, reducing 
class size from forty to ten people led to a 30% reduction in 
transmission [28]. Gather size plays a critical role in reducing 
gathering size to mitigate spread. Mask use is key in reducing 
transmission. Effectiveness varies based on layers, fabric, 
fit, and type of mask [29]. A study across 92 regions found 
a 19% decrease in the reproduction number with consistent 
mask use [30]. Mask mandates led to significant decreases 
in new cases, deaths, and hospital visits within 40 days of 
enforcement [31]. Surgical masks are most effective in low-
viral environments, while N95 masks perform better in high-
viral load settings [32].

COVID-19 Associated Symptoms
SARS-CoV-2 presents a range of symptoms, from 

asymptomatic to severe outcomes [33]. Symptoms typically 
appear 2 to 14 days after exposure and may progress in 
intensity during the infection period. Common symptoms 
include fever, cough, shortness of breath, headache, body 
aches, nausea, vomiting, diarrhea, sore throat, congestion, and 
loss of taste or smell, often lasting 1-2 weeks [34].  In more 
severe cases, long COVID develops in 28-60 days (Figure 
2), characterized by persistent symptoms such as joint pain, 
chest pain, cough, fatigue, brain fog, anxiety, depression, 
myalgia, peripheral neuropathy, memory difficulties, and 
impaired attention. These symptoms can last from 4 weeks 

to over a year and are linked to factors such as comorbidities, 
age, occupation, and race-ethnicity [35, 36, 37].

Comorbidities 
Comorbidities are often associated with more severe cases 

of long COVID [38]. Although a variety of comorbidities can 
result in worse prognoses, a few have been consistently linked, 
including hypertension, diabetes, obesity, chronic obstructive 
pulmonary disease (COPD), asthma, cardiovascular diseases 
(CVD), liver diseases, malignancy, human immunodeficiency 
virus (HIV), and renal diseases [39]. These comorbidities have 
been notably associated with chronic inflammation, immune 
dysregulation, and metabolic dysfunction, exacerbating viral 
infections [40]. Obesity and lipid metabolism disorders are 
the key determinants in the risk for developing long COVID 
syndrome [41]. In certain cases, comorbidities exhibit 
more specific symptomatic links. For example, patients 
with cardiovascular diseases and hypertension demonstrate 
increased expression of ACE2, which heightens their 
susceptibility to COVID-19 infection and worsens initial and 
long-term cardiovascular complications [42, 43]. Similarly, 
individuals with HIV experience compromised immune 
responses and heightened inflammation due to decreased 
CD8+ T cells and increased PD-1+, a key marker for immune 
exhaustion [44, 45]. Diabetes and obesity also contribute 
to immune dysregulation by activating pro-inflammatory 
cytokines and impairing leukocyte metabolism, including 
reduced T-cell functionality and diminished antibody 
production [46, 47]. Understanding the various connections 
between comorbidities and COVID-19 provides valuable 
insights into predictive methods of infection and highlights 
the organ systems most likely to be at risk.

Figure 2: Disease progression of SARS-CoV-2. Days 0–3 typically involve primary and initial symptoms. Between days 3–7, the infection 
progresses and may intensify, with the viral load peaking at the onset of the acute phase, often accompanied by more severe symptoms. After 
14 days, patients may recover or transition to long COVID, characterized by persistent symptoms lasting at least 28 days. Symptoms persisting 
for over 60 days may lead to the infection being classified as chronic.
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Gut Microbiota
Gut microbiota, comprising protozoa, viruses, fungi, 

and bacteria, plays essential roles in digestion, metabolism, 
intestinal barrier support, and immune modulation. Major 
gut microbiota phyla include Firmicutes, Bacteroidetes, 
Actinobacteria, and Proteobacteria [48]. These microbiota 
are influenced by diet, environment, lifestyle, and antibiotic 
use [49]. Dysbiosis, or imbalance in gut microbiota, is linked 
to various diseases, including metabolic, gastrointestinal, 
immune, neurological, psychiatric, and cardiovascular 
disorders [50]. In the context of SARS-CoV-2, alterations 
in gut microbiota, such as variations in Ruminococcus 
gnavus, Bacteroides vulgatus, Faecalibacterium prausnitzii, 
and Veillonella, have been associated with long-term 
COVID symptoms, including respiratory dysfunction, 
fatigue, and chest tightness. Conversely, some microbiota, 
such as Faecalibacterium prausnitzii and Intestinimonas 
butyriciproducens, showed protective roles [51, 52].

Diet and Gut Microbiota 
Diet significantly impacts gut microbiota composition 

and the production of SCFAs (short-chain fatty acids) such 
as propionate, acetate, and butyrate. Foods with higher levels 
of resistant starch, inulin, and fructo-oligosaccharides—
specifically fruits, vegetables, nuts, and seeds—are positively 
correlated with gut microbiota producing SCFAs [53, 54]. 
In contrast, diets high in protein and low in carbohydrates 
are often associated with decreased SCFA values. Reduced 
dietary intake of carbohydrates by obese subjects results in 
decreased concentrations of butyrate and butyrate-producing 
bacteria in feces [54]. Dietary preferences among global 
populations differ significantly in these values. Specifically, 
Mediterranean, plant-based, and vegetarian diets enhance 
microbial diversity and SCFA production [55, 56]. In an 
animal study examining a controlled vegetable-protein 
diet, tight junction integrity increased, thereby reducing 
pro-inflammatory factors [56]. Additionally, females 
consuming fermented vegetables presented with increased 
anti-inflammatory Faecalibacterium prausnitzii but 
decreased Ruminococcus torques, which typically promote 
inflammation [57].When comparing various ethnic groups, 
vegetable intake and red meat consumption were identified as 
factors influencing microbiota variation. African Americans 
and Latinos, with lower vegetable intake, exhibited 
reduced levels of Lachnospira, a microbiota related to fiber 
breakdown [58]. These findings emphasize the importance 
in understanding how diet can gut microbiota production 
and variance to further affect health outcomes and potential 
prevention or association of disease. 

Race, Ethnicity, Long COVID, and Gut Microbiota 
Long COVID and gut microbiota are linked to racial 

and ethnic variations among populations, exhibiting 

multidirectional correlations with one another. Studies show 
that patients with long COVID have reduced bacterial diversity 
and lower levels of SCFA-producing bacteria even one year 
after infection [59]. Long COVID disproportionately affects 
certain racial and ethnic groups. A study in Denmark found 
that ethnic minorities from North Africa, the Middle East, 
Asia, and Eastern Europe had a significantly higher risk of 
infection compared to the native Danish population. Among 
these groups, individuals of Iraqi, Turkish, and Somali origin 
had the highest adjusted hazard ratios [60]. Similarly, in the 
U.S., the Census Bureau's Household Pulse Survey reported
that long COVID was more prevalent among females, Black
individuals, and Hispanics compared to males, non-Hispanic
individuals, and Whites [61]. These findings align with
another U.S.-based study across 12 states, which found that
Black individuals had the highest levels of virus-associated
hospitalizations. Additionally, Hispanic, Alaska Native, and
Native American populations showed a high prevalence of
hospitalization [62, 63].

Gut microbiota composition with functional importance 
in gut integrity and immune functioning varies across racial 
and ethnic groups. Studies have noted a significant impact of 
microbiota composition and disease outcomes of COVID-19 
[64]. Particularly the Christensenellaceae family, with strong 
anti-inflammatory roles, has seen a protective role in Long 
Covid, with Dutch populations experiencing highest levels 
[65, 66]. A U.S.-based study of students revealed that Black 
students had higher rates of Bacteroides, producing toxin 
increasing inflammation, while White students exhibited 
higher levels of anti-inflammatory microbiota such as 
Faecalibacterium and Roseburia [67, 68, 69]. Studies on East 
Asian communities noted more gut microbiota producing 
SCFAs, which were not directly correlated with diet [70]. 
Another study found individuals of Ghanaian heritage to 
have greater microbial diversity and SCFA production, 
while Americans exhibited the lowest levels [71]. These 
disparities and variations in long COVID prevalence and gut 
microbiota may arise from a combination of factors, including 
socioeconomic inequalities, healthcare access, occupation, 
evolutionary mechanisms, genetics, housing conditions, 
and dietary access. The influence of gut microbiota on 
long COVID outcomes is significant: anti-inflammatory 
microbiota may help reduce the severity of viral infections 
and inflammatory responses, while pro-inflammatory 
microbiota can exacerbate viral symptoms. These differences 
may partially explain the varying impacts of long COVID 
across racial and ethnic groups.

ACE2 Enzyme and Its Role in Gut Microbiota and 
Long COVID

Angiotensin-converting enzyme (ACE) converts 
angiotensin I to angiotensin II through the process of cleavage. 
ACE2, a homologue of ACE, converts angiotensin II to 
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angiotensin 1-7 by removing an amino acid. ACE promotes 
vasoconstriction, while ACE2 acts as a vasodilator (Figure 
3). The ACE2 enzyme plays a crucial role in regulating gut 
microbiota and is tightly linked to the renin-angiotensin 
system (RAS), which controls blood pressure, electrolyte 
balance, and fluid levels [72].  Studies have shown that 
ACE2 influences gut microbiota composition. In mice, ACE2 
knockout leads to higher levels of certain gut microbiota, 
while overexpression of ACE2 results in increased levels 
of anti-inflammatory probiotics and SCFA-producing 
microbiota [73]. This suggests a bidirectional relationship 
between ACE2 and gut microbiota, where changes in one 
can influence the other. ACE2 is expressed in both the 
gastrointestinal and respiratory tracts, making it a key player 
in the pathogenesis of COVID-19, including long COVID. 
SARS-CoV-2 binds to ACE2 receptors, downregulating 
ACE2 expression, which disrupts RAS and gut microbiota 
homeostasis. This dysregulation contributes to the severity 
of respiratory symptoms, including chronic cough, shortness 
of breath, and chest pain in long COVID patients [74, 75]. 
Furthermore, ACE2 is involved in the kallikrein-kinin system 
(KKS), which regulates bradykinin levels. When ACE2 is 
downregulated by SARS-CoV-2 binding, KKS becomes 
dysregulated, leading to inflammation, vascular permeability, 
and lung damage, further exacerbating respiratory symptoms 
[76, 77 ,78]. In normal functioning, ACE2 converts 
angiotensin II into angiotensin 1-7, which has vasodilatory 
and anti-inflammatory effects. However, when ACE2 function 
is reduced due to SARS-CoV-2 infection, angiotensin II 
levels remain elevated while angiotensin 1-7 is not produced, 
contributing to the pathogenesis of cytokine storms in severe 
COVID-19 cases [79]. These cytokine storms result from an 
overactive immune response characterized by elevated levels 
of inflammatory cytokines, which contribute to systemic 
damage and severe respiratory issues [80].

Gut Axis and Dysbiosis in Long COVID
ACE2 plays a vital role in maintaining homeostasis in 

the gut microbiota. If ACE2 expression is reduced, it leads to 
gut dysbiosis, an imbalance in the microbiota that can result 
in systemic inflammation, further exacerbating the severity 
of COVID-19 [81]. This is particularly important in Long 
COVID, where dysbiosis in the gut microbiota is linked to 
chronic respiratory symptoms and inflammatory processes.

The gut-lung axis, a bidirectional communication pathway 
between the gastrointestinal and respiratory systems, plays a 
key role in this relationship. Disruptions in the gut microbiota 
affect the immune system, which in turn influences the lungs, 
leading to chronic inflammation. The dysregulation of ACE2 
and the associated gut microbiota imbalance contribute to 
this process by increasing intestinal permeability. When 
ACE2 is downregulated, intestinal junction proteins like 
occludin, claudin, and ZO-1 are compromised, allowing 

bacterial endotoxins such as lipopolysaccharide (LPS) to leak 
into systemic circulation (Figure 4). These endotoxins bind 
to TLR4 receptors on immune cells, triggering the release 
of pro-inflammatory cytokines like IL-6, TNF-alpha, and 
IL-1β, which further fuel the cytokine storm and increase 
inflammation throughout the body [82].

Gut Dysbiosis and Affected Organ systems in Long 
COVID

Various organ systems are affected due to gut dysbiosis 
in long COVID. The most affected systems include the renal, 
cardiovascular, respiratory, and musculoskeletal systems 
(Figure 5). Each of the affected systems are discussed below.

Musculoskeletal System 
Recent research has highlighted a significant association 

between gut microbiota dysbiosis and musculoskeletal 
(MSK) pain in individuals suffering from Long COVID. 
Dysbiosis has been shown to influence nocioplastic pain, a 
form of chronic pain characterized by tissue damage with 

Figure 3: Angiotensin-converting enzyme (ACE) converts 
angiotensin I to angiotensin II through the process of cleavage. 
ACE2, a homologue of ACE, converts angiotensin II to angiotensin 
1-7 by removing an amino acid. ACE promotes vasoconstriction,
while ACE2 acts as a vasodilator.
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Figure 4: Comparison of the gastrointestinal epithelium in healthy and SARS-CoV-2. In SARS-CoV-2 infection, there is increased levels of 
lipopolysaccharides (LPS) due to bacterial infection that disrupts the epithelial tight junction, resulting in leaky gut and inflammation.

Figure 5: Gut dysbiosis induced by viral infection and its bidirectional effects in relation to long COVID, impacting various organ systems. 
The most affected systems include the renal, cardiovascular, respiratory, and musculoskeletal systems.
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an unclassifiable origin [83]. Pain in this context is linked 
to proinflammatory cytokine release. Patients with long 
COVID experiencing MSK pain exhibit elevated levels of 
proinflammatory cytokines, which may contribute to the 
onset and persistence of pain symptoms [84]. One mechanism 
through which dysbiosis may affect bone metabolism and 
MSK health involves Toll-like receptor 5 (TLR5). The 
microbiota acts as an activator of TLR5, which modulates 
immune responses and impacts bone remodeling. In a healthy 
system, TLR5 activation by microbiota-derived signals 
influences the balance between osteoclasts and osteoblasts, 
both critical for bone homeostasis [85]. Studies on TLR5-
deficient mice revealed increased periosteal bone formation, 
suggesting a potential connection between TLR5 signaling, 
the microbiome, and bone remodeling [86]. These findings 
underscore the indirect role of microbiota in bone health 
and MSK pain via immune modulation, especially when 
immune balance is disrupted by dysbiosis. Physical activity 
plays a crucial role in mitigating these effects. Low physical 
activity, combined with dysbiosis, can exacerbate bone 
degeneration and MSK pain. Exercise is known to influence 
gut microbiota, potentially alleviating some of the adverse 
effects of dysbiosis on the musculoskeletal system [87, 88]. 
Long COVID patients often report pain in regions such as 
the knees, shoulders, and cervical spine, with IL-6, IL-10, 
TNF-α, and IFN-g identified as predictive cytokines for pain 
in these areas [84]. These cytokines, elevated in individuals 
with chronic MSK pain, contribute to inflammation and pain 
sensitivity. Further research has shown that gut microbiota 
composition influences conditions like lower back pain (LBP) 
[89]. Higher levels of Adlercreutzia bacteria were associated 
with increased inflammation and a greater likelihood of 
developing LBP, particularly in individuals with higher 
BMI [90]. This highlights the role of specific microbial 
communities, combined with obesity, in the severity of 
MSK pain. The presence of pathogenic microbiota, such 
as Pseudomonas veronii, Pseudomonas stutzeri, and 
Streptococcus anginosus, has been linked to intervertebral 
disk degeneration [91]. Dysbiosis-related infections and 
the subsequent increase in proinflammatory cytokines may 
directly compromise the structural integrity of the spine and 
other joints, contributing to chronic pain [92]. Moreover, 
gut microbiota dysbiosis, when combined with low physical 
activity, depression, and anxiety, significantly contributes to 
chronic MSK pain in long COVID patients. The interplay 
between microbial imbalances, immune system activation, 
and cytokine release underlies the mechanisms of pain in 
these individuals [93].

Neurologic system
Long COVID is increasingly associated with persistent 

neurological symptoms and cognitive dysfunction, even in 
non-hospitalized individuals. Common symptoms include 

brain fog, headaches, numbness or tingling, dysgeusia 
(altered taste), anosmia (loss of smell), and myalgias (muscle 
pain) [94]. Among these, brain fog is particularly notable 
for its strong correlation with long-term cognitive deficits, 
such as problems with attention, memory, processing speed, 
and executive function [95]. ACE2 is present in regions 
without a blood-brain barrier, such as the hypothalamus and 
circumventricular organs, as well as in regions with a blood-
brain barrier, specifically within endothelial cells, astrocytes, 
and pericytes. The conversion of angiotensin II to angiotensin 
1-7 by ACE2 reduces oxidative stress and inflammation at
the blood-brain barrier. However, COVID-19-associated
downregulation of ACE2 can increase vulnerability to
SARS-CoV-2 by promoting viral entry in regions lacking
the barrier and compromising blood-brain barrier integrity
in protected regions [96, 97]. The olfactory bulb serves as
a key entry point for the virus, allowing it to spread to other
brain regions, including the brainstem, which has a high
density of ACE2 receptors. The brainstem controls essential
functions like breathing and heart rate but also plays a role in
neurocognitive processes. Its involvement can lead to long-
term neurological effects [98].

The causes of brain fog in long COVID are multifactorial, 
involving mechanisms such as nerve infection, blood-brain 
barrier disruption and permeability, and inflammation 
mediated through ACE2 receptors. The virus may enter 
the brain via several pathways, including the olfactory, 
trigeminal, and vagus nerves, which have direct connections 
to the central nervous system and significantly impact 
neurocognitive functioning [99, 100]. Additionally, the 
blood-brain barrier, which protects the brain from harmful 
substances, is thought to be compromised during COVID-19 
infection. This disruption, involving the breakdown of tight 
junctions and dysfunction of endothelial cells and pericytes, 
allows entry of pathogens and inflammatory molecules, 
contributing to neurological deficits [101]. Animal studies 
suggest that elevated levels of angiotensin II can amplify 
brain inflammation, increasing BBB permeability and 
neurocognitive symptoms like brain fog [102]. ACE2 receptors 
located on astrocytes and neurons allow viral binding, which 
activates brain mast cells, microglia, and astrocytes. This 
activation releases pro-inflammatory cytokines, impairing 
brain function and contributing to brain fog [103]. The 
gut-brain axis is a critical link between the gut microbiome 
and brain function. ACE2 receptors are present in both the 
brain and gut, indicating a potential connection between gut 
health and neurocognitive symptoms. In long COVID, gut 
microbiota dysbiosis may reduce the production of SCFAs 
such as butyrate, which is essential for maintaining gut 
barrier integrity and controlling inflammation. A deficiency 
in butyrate weakens the gut barrier, contributing to systemic 
inflammation that can impact brain function. Furthermore, 
the gut microbiota regulates anti-inflammatory cytokines, 
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helping control systemic inflammation. Dysregulation of this 
system can lead to a pro-inflammatory state that affects the 
brain and contributes to neurocognitive symptoms, such as 
brain fog [104].

 Renal System
Human and mouse model studies have highlighted 

significant negative effects, and a high prevalence of acute 
kidney disease (AKD) associated with long COVID [105]. 
Patients with AKD face a threefold increase in mortality 
risk. In hospitalized COVID-19 patients, damage to 
proximal kidney tubules has been observed through urine 
and biochemical marker tests. Proximal kidney tubules with 
ACE2 receptors facilitate viral binding. Combined with 
cathepsins that modify spike proteins, these receptors allow 
the virus to enter through the apical membrane, leading to renal 
dysfunction [106]. Severe COVID-19 and prolonged long 
COVID increase the risk of acute kidney injury (AKI), often 
resulting in proteinuria. Patients with pre-existing chronic 
kidney disease (CKD) and long COVID have experienced 
reductions in glomerular filtration rates (GFR), with a median 
decrease of 2.96 mL/min/1.73 m² in virus-infected patients 
[107]. Studies also report that a GFR <60 mL/min/1.73 
m² correlates with higher hospital mortality rates in long 
COVID patients [108]. Additionally, long COVID patients 
are at greater risk of developing end-stage kidney disease 
(ESKD), defined as a GFR <15 mL/min/1.73m², leading to 
kidney failure that requires dialysis or a transplant for proper 
body regulation [109]. Postmortem renal histopathological 
analysis of COVID-19 patients in China has revealed 
significant kidney tissue damage, including dilation, thinning, 
and flattening of the tubules [110]. This damage is primarily 
attributed to viral infection, which disrupts kidney function, 
particularly in the proximal tubular cells (PTCs) that are 
essential for nutrient and electrolyte reabsorption [111]. 
Dysregulation of the gut microbiota in long COVID patients 
is linked to the accumulation of uremic toxins such as indoxyl 
sulfate, p-cresyl sulfate, and trimethylamine N-oxide. These 
toxins contribute to chronic inflammation and endothelial 
dysfunction [112]. Specifically, they disrupt junctional 
proteins like VE-cadherin and ZO-1, leading to increased 
endothelial permeability and vascular inflammation, which 
further exacerbates kidney and systemic dysfunction [113]. 
Histological findings in long COVID patients have shown 
similar renal pathology [114]. COVID-induced kidney 
injury impairs the primary function of PTCs, disrupting the 
reabsorption of essential nutrients, electrolytes, minerals, and 
amino acids, particularly tryptophan. Tryptophan is crucial 
for the tryptophan–kynurenine pathway and the production 
of melatonin and serotonin. Deficiencies in tryptophan can 
affect neurocognitive functioning, contributing to brain 
fog, fatigue, and muscle weakness—symptoms commonly 

associated with long COVID [115].

Respiratory System 
ACE2 is expressed on type II alveolar epithelial cells 

within the lungs, where it facilitates gas exchange and 
the production of surfactant. Surfactant is essential for 
maintaining alveolar stability, allowing efficient oxygen and 
carbon dioxide exchange between the bloodstream and air. 
ACE2 also plays a critical role in the renin-angiotensin system 
(RAS), modulating inflammation, angiotensin II-mediated 
vasoconstriction, and vascular permeability [116, 117]. The 
mucosal immune system forms the primary defense against 
pathogens across mucosal surfaces, including the respiratory 
tract, gastrointestinal tract (GIT), and genitourinary 
tract. Components of this system include epithelial cells, 
mucosal layers, gut-associated lymphoid tissue (GALT), 
nasopharyngeal-associated lymphoid tissue (NALT), 
immune cells, secretory IgA, cytokines, and chemokines. 
The interconnectedness of immune responses across mucosal 
sites, referred to as the common mucosal immune system 
(CMIS), is evidenced by the migration of B immunoblasts 
into intestinal, respiratory, and genital tissues, highlighting 
a shared immune response [118]. The gut microbiota 
significantly regulates mucosal immune function, influencing 
the development of immune cells such as Th17 and regulatory 
T cells. These interactions are mediated through microbiota-
derived metabolites, such as SCFAs, which support epithelial 
barrier integrity and modulate immune cell activity. The 
gut microbiota is also essential for maintaining immune 
tolerance, preventing inappropriate inflammation [119]. 
The gut-lung axis exemplifies the interconnected nature of 
mucosal immunity. Studies show that respiratory infections 
can influence gastrointestinal immunity and vice versa. For 
example, respiratory influenza virus infections have been 
linked to intestinal immune injury mediated by microbiota-
driven Th17 cell inflammation [120]. Similarly, disruptions 
in the gut microbiota can affect respiratory immunity, 
demonstrating the bidirectional communication within this 
axis.

In long COVID, dysbiosis in the gut microbiota is 
increasingly implicated in chronic respiratory symptoms. 
Markers such as lipopolysaccharide-binding protein (LBP), 
which indicate gut microbiota dysfunction, have been 
closely associated with respiratory failure in COVID-19 
patients [121]. These findings underscore the role of gut-
lung axis disruptions in exacerbating respiratory dysfunction. 
Persistent respiratory complications in long COVID, 
including chronic cough, fibrotic lung disease, bronchitis, 
and pulmonary vascular disease, are frequently linked to 
chronic inflammation [122]. Dysbiosis in the gut microbiota, 
characterized by reduced microbial diversity, may contribute 
to this inflammation, affecting both the GIT and respiratory 
systems. These findings highlight the need to explore the 
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microbiota’s role in immune regulation as a pathway for 
developing therapeutic strategies for managing long COVID.

Cardiovascular System 
The pandemic presented patients afflicted with SARS-

CoV-2 with a range of cardiovascular complications, 
including myocarditis, stress cardiomyopathy, myocardial 
infarction (MI), and arrhythmias [123]. One study found that 
80% of patients with severe COVID-19 experienced some 
level of cardiac symptoms, and 25% reported persistent 
symptoms three months post-diagnosis [124]. A variety of 
potential mechanisms could contribute to these outcomes, 
with bidirectional interactions between comorbidities and 
viral infection impacting cardiac function [125]. A systematic 
review by Sha’ari et al. revealed that COVID-19-infected 
patients with pre-existing CVD had significantly higher 
risks of long COVID, with hypertension and heart failure 
serving as the strongest predictors [126]. Additional studies 
corroborate these findings, linking hypertension, elevated 
cholesterol levels, and CVD comorbidities to post-viral 
chronic symptoms, further emphasizing the multidirectional 
relationship among the cardiovascular system, gut dysbiosis, 
and long COVID [127]. The ACE2 receptor, expressed 
on cardiac pericytes, plays a role in regulating myocardial 
blood supply. SARS-CoV-2 infection can impair ACE2 
function, causing capillary endothelial dysfunction and 
restricted myocardial blood flow, potentially contributing to 
cardiovascular complications [128]. Endothelial cells, which 
also express ACE2, are susceptible to acute vasculitis, a 
possible mechanism of cardiovascular injury.

SCFAs act on endothelial cells to prevent vascular cell 
adhesion molecule-1 (VCAM-1) and IL-6 and IL-8 pro-
inflammatory expression, reducing inflammation and cell 
adhesion to prevent atherosclerosis [129]. SCFAs further 
regulate blood pressure by reducing oxidative stress and 
modulating neurohormonal pathways, mitigating negative 
cardiovascular effects [130]. Additionally, SCFAs modulate 
lipid metabolism, decreasing triglyceride, cholesterol, 
and LDL levels while increasing HDL levels [130]. Gut 
microbiota, characterized by decreased diversity, low 
SCFA levels, and systemic inflammation, has emerged 
as a key contributor to cardiovascular outcomes in SARS-
CoV-2 infection [131, 132]. The gut microbial metabolite 
trimethylamine N-oxide (TMAO), derived from microbial 
metabolism of dietary choline, L-carnitine, and betaine, is 
implicated in cardiovascular disease through mechanisms 
such as inhibition of cholesterol metabolism, arterial plaque 
formation, platelet aggregation, and thrombosis [133]. TMA-
producing bacteria in the order Clostridiales are instrumental 
in TMAO production [134]. COVID-19 infections can 
exacerbate gut dysbiosis, altering the Clostridiales order, 
including decreased levels of anti-inflammatory species such 

as Faecalibacterium prausnitzii and increased pathogenic 
species such as Clostridium ramosum and Clostridium 
hathewayi [135, 136]

Faecalibacterium prausnitzii plays a role in SCFA 
butyrate production, strengthening gut wall integrity. Higher 
levels of this bacterium are associated with reduced coronary 
heart disease and ischemic stroke. It has also been linked to 
reduce inflammation by decreasing plasma LPS levels [137, 
138]. Global studies have further strengthened the connection 
between long COVID, gut dysbiosis, and cardiovascular 
outcomes. One study, conducted across 12 countries, found 
that patients more likely to be hospitalized with COVID-19 
exhibited lower levels of Faecalibacterium prausnitzii and 
higher levels of pro-inflammatory bacteria, exacerbating 
cardiovascular issues [139]. Another study, involving 2,871 
adult subjects from 16 countries, identified a significant 
association between low levels of butyrate-producing 
bacteria and COVID-19 mortality [140]. These findings 
confirm the multifaceted connection between gut microbiota, 
the cardiovascular system, and the symptoms experienced by 
long COVID patients, highlighting the value of integrative 
approaches in preventing cardiovascular symptoms and 
improving long-term outcomes.

Summary
The role of gut microbiota in long COVID symptoms 

remains to be fully understood. However, current research 
highlights the significant impact of gut dysbiosis on both 
health and disease states across various organ systems. 
Organ-specific comorbidities may bidirectionally exacerbate 
gut dysbiosis and Long COVID symptoms. Notably, 
dysregulation involving the ACE2 receptor, SCFA production 
levels, cytokine storms, and pro-inflammatory responses has 
been identified as central to this process. Further research 
is needed to delineate the specific systems directly versus 
indirectly affected, as well as to understand the cross-
communicative interactions between systems.

Future Directions 
Accounting for geographical, environmental, socio-

behavioral, dietary, comorbidity, and racial-ethnic disparities 
is essential for understanding the observed outcomes of gut 
dysbiosis associated with Long COVID. Future studies should 
prioritize longitudinal tracking of gut microbiota from the pre-
infection stage through acute infection and into the chronic 
phase of Long COVID. More targeted approaches should 
include person-specific microbiome profiling, particularly 
for individuals with comorbidities who are at higher risk 
of developing long COVID. These studies should examine 
microbiome shifts over time during infection and explore 
interventions tailored to these high-risk patients. Moreover, 
efforts should focus on monitoring individuals at elevated 
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risk before infection to evaluate how probiotics and targeted 
gut therapies might reverse or mitigate gut inflammation 
and dysbiosis. Such interventions could help maintain 
organ-specific balance and reduce chronic symptoms. 
This research should also consider controlled dietary and 
environmental factors to explore how supplementation and 
fortification could act as preventive mechanisms against 
Long COVID. Using the microbiome as a predictive tool 
holds promise for improving primary preventive outcomes. 
On a global scale, controlled supplementation studies 
within diverse populations—considering diet, environment, 
race, and ethnicity—could identify which groups benefit 
most from specific interventions and which may require 
multidisciplinary preventive approaches. Understanding the 
influence of microbiome shifts on the progression of Long 
COVID could uncover early markers of the disease. This 
would help clarify the predictive value of the changes in the 
microbiota and play a central role in symptom mitigation, 
ultimately improving long-term health outcomes for patients.

Key Findings
• SARS-CoV-2 infection and transmission are influenced

by factors such as ventilation types, mask usage, and
gathering size. Additionally, race and ethnicity, along
with variations in gut microbiota composition, contribute
to differences in susceptibility and disease severity.

• Pre-existing conditions may increase the risk of severe
COVID-19 and long COVID. These conditions can
contribute to chronic inflammation and immune
dysfunction, exacerbating symptoms.

• Dysbiosis in the gut microbiota, influenced by ACE2
downregulation, contributes to systemic inflammation,
exacerbating chronic respiratory symptoms and
inflammatory processes in Long COVID.

• Disruption of the gut-lung axis, through immune system
modulation and bacterial endotoxins like LPS, increases
chronic inflammation, worsening respiratory and
musculoskeletal symptoms in Long COVID patients.

• Long COVID has bidirectional effects on gut microbiota
and multiple organ systems, including musculoskeletal,
renal, neurological, cardiovascular, and respiratory
systems. Gut microbiota dysbiosis influences the severity
and progression of long COVID symptoms across these
organ systems.
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